
1

Bringing together GALS design
and open-source tools

in a hardware-software-FPGA
co-simulation flow

Lilian Janin, Doug Edwards
ASYNC-NOCS 2010

AsipIDE Tutorial

2

EU Project GALAXY

! GALs interfAce for compleX digital
 sYstem integration

! Supported by
 European Commission
7th Framework Programme (2007-2013)
Objective ICT-2007.3.3:
Embedded System Design

3

EU Project GALAXY

! GALAXY Project Partners
•  IHP GmbH - Innovations for High

 Performance Microelectronics (Germany)
•  EPFL - Ecole Polytechnique Fédérale de

 Lausanne (Switzerland)
•  Università di Bologna (Italy)
•  Silistix UK Ltd. (United Kingdom)
•  Infineon Technologies AG (Germany)

4

EU Project GALAXY

! GALAXY Project Goals
•  Remove existing barriers to the adoption of

 GALS technology
•  Integrated GALS design flow
•  Interoperability framework between existing

 open and commercial CAD tools
•  Heterogeneous systems at mixed levels of

 abstraction
•  Novel Network-on-Chip capabilities

5

EU Project GALAXY

! GALAXY Demonstrator:
Wireless communication system in
 40nm CMOS process
•  Evaluate GALS approach to solve system

 integration issues
•  Prove robustness to process variability

 problems in nanoscale geometries
•  Explore the low EMI properties, inherent

 low-power features

6

Tutorial Overview

! General presentation of tools and IDE

! Demo of main features

! Hands-on: A home surveillance system

7

General presentation of tools and IDE

!  Motivation
•  Bringing GALS to the masses!
•  Gcc brought software programming to home users
•  Many open-source/freely-available hardware

 design tools
–  Icarus Verilog simulator
–  Xilinx ISE
–  VHDL Alliance tools from Lip6

•  But full open-source hardware-software-FPGA
 design flow still unclear

•  Also integrates commercial tools

8

General presentation of tools and IDE

!  AsipIDE connects existing tools together to
 form a (co-)simulation design flow
•  Iterative design methodology

–  Transforming software...
–  …to hardware

•  Hardware-software-FPGA co-simulation
•  Automatically generated GALS

 communications
•  Graphical debugging

–  Multiple abstractions represented together
–  Animation from simulation traces

9

General presentation of tools and IDE

! Calculator demo
•  Demonstrates iterative GALS prototyping

! Baseband processor&G3card demo
•  Demonstrates scalable environment
•  Navigation in large embedded system

! Features demo

10

Calculator Demo

• Calculator:
•  Keyboard
•  LCD
•  Main program

•  polling the keyboard
•  processing
•  sending value to LCD

•  Keyboard asynchronous interface
•  LCD asynchronous interface

11

Calculator Demo
• High level architecture in C/C++
•  Step-by-step implementation on hardware
•  FPGA board prototyping

12

Calculator Demo

Keyboard
(synchronous)

Main Calculator
(asynchronous)

LCD
(synchronous)

Software simulation
Hardware

Step 1. All in Software

13

Calculator Demo

Keyboard
(synchronous)

Main Calculator
(asynchronous)

LCD
(synchronous)

Software simulation
Hardware

Step 2. Keyboard in Hardware

14

Calculator Demo:
FPGA board

15

! Simplified view of board for Galaxy tools

Calculator Demo:
FPGA board

16

! Simplified view of board
!  Importing components to targets

Calculator Demo:
FPGA board

17

! Simplified view of board
!  Importing components to targets
!  Links Analysis

•  Impossible links re-routed

Calculator Demo:
FPGA board

18

!  Main execution on host
!  SystemC transaction “poll keyboard”

•  Sent to router1
•  Routed through router2 and router3
•  Converted to hardware asynchronous channel

 transaction

Calculator Demo:
Hw-Sw Sync-Async Cosimulation

!  Verilog keyboard_if:
•  Synchronous

 implementation
•  Asynchronous

 interface

19

External Tool Flow

Xilinx tool flow integrated with
 SystemC and C++ flows

20

Calculator Demo

Keyboard
(synchronous)

Main Calculator
(asynchronous)

LCD
(synchronous)

Software simulation
Hardware

Step 3. All in Hardware

21

Baseband processor&G3card Demo

!  Illustrating scalability
•  Zoom&pan inside large designs

22

Baseband processor&G3card Demo

23

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

24

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

25

Features Demo:
Automatic instantiation of adapters

26

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

27

Features Demo:
Automatic use of transactors

28

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

29

Features Demo:
Switching between abstractions

30

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri
 nets

!  Automatic use of local and remote tools for compilation,
 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

31

Features Demo:
Simulator/FPGA selection

32

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

33

Features Demo:
Tool flows

34

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving

 space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

35

Features Demo:
Trace file animation for debugging

36

Features Demo
!  Automatic instantiation of adapters
!  Automatic use of transactors
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated
!  Selection of any simulators or FPGA target

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues)

!  Trace file animation, debugging
•  Colour-based channel representation, clearer and saving space
•  Asynchronous debugging such as deadlock detection

!  Asynchronous NoC
•  XPipes: graphical updates ! regenerates everything automatically

37

Features Demo:
Asynchronous XPipes NoC

38

Features Demo:
Asynchronous XPipes NoC

39

Features Demo:
Asynchronous XPipes NoC

40

Features Demo:
Asynchronous XPipes NoC

41

Hands-on:
A home surveillance system

!  Motivation
•  Typical application which home developers

 would like to use FPGAs for, but encounter
 design flow problems

•  Linux-based solutions available
•  USB webcam
•  Zoneminder analysis
•  Remote storage

–  High purchase cost
–  High consumption

•  FPGA cheaper final solution

42

Hands-on:
A home surveillance system

!  Video processing application
•  Webcam " motion detection " video encoding " ethernet

 streaming to remote server

!  Outline
•  Requirements definition
•  Identification of re-usable open-source components
•  Creation of components, architecture exploration
•  Components assembly, automatic adapters
•  Automatic code generation, code running in SW
•  Iterative refinement of SW components to HW
•  Co-simulation software-FPGA

43

Requirements Definition

!  Inputs: webcam + keypad
!  Outputs:

•  Ethernet connection to send the motion-detected
 images/videos

•  Replaced by local VGA output for the demo
!  Movement is detected by subtracting 2

 consecutive frames
!  Changes in input frame pixels start the

 recording
!  Threshold set by keypad

44

Block Diagram

Frame
 Grabber

Keypad

Image Processor

Video
 Output

45

Block Diagram

Keypad

Image Processor
Video
encoder

Ethernet
output

VGA out Frame
 Grabber

46

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

1. All simulated in software at TLM level

47

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

2. Keypad refined to Verilog
Co-debugging SystemC TLM-Verilog

48

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

3. Keypad moved to hardware
Transaction routing through board’s CPU and FPGA

Co-debugging hardware-software

49

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

4. Processor and output moved to hardware
Based on re-usable open-source cores

50

Identification of
re-usable open-source components

Available from www.opencores.org

•  Keypad scanner

•  JPEG-MJPEG video encoder
•  VGA/LCD controller
•  Wishbone Memory wrapper

51

Start of Hands-on

!  Initialise environment
source asipide_env_setup!

! Create and enter your own directory
mkdir your_name!
cd your_name!

! Start IDE
asipide!

52

 Hands-on Step 1 - How to:
Create a new component

!  If it will contain sub-components
•  Select the parent component in the graphical design view
•  Design Menu " Create component " Create sub-circuit component

!  If it will be a “leaf” component, referring to existing source code files
•  Select the parent component in the graphical design view
•  Design Menu " Create component " Create single element component

53

Step 1 - How to:
Create a new component

! After a component creation, the IDE
 enters “Edit mode”
•  Components can be moved
•  Components can be resized

! Next created component will inherit the
 same size

! You can edit the component and
 instance names in the Property View

54

Step 1:
Creation of component architecture

Create these 6 components:
•  Image_processor
•  Frame_grabber

•  Keypad_scanner
•  Video_output, with sub-components:

–  Video_encoder

–  Ethernet_output

55

Step 1 - Result:
Created components

56

Components assembly

!  We will now import and assemble the components together

!  Often the hardware is not available at the start of a project. We
 need to do as much as possible using software and simulators.

! Version 1 (mostly to define the architecture and the main
 communication data types):
•  Frame_grabber component will take its input from files

•  Ethernet output will dump results to a file

•  Image processor will just subtract the new frame's pixels values
 from the previous frame's and check whether the max pixel change
 goes over a certain threshold

•  Video encoder will use free software encoders: ffmpeg/libavcodec

!  Communications will use TLM, the highest level of abstraction
 integrated in AsipIDE.

57

Definition of
ASIP communication types

! The image processor will be the main
 module (initiating requests)
•  Initiates requests to frame grabber
•  Sends probe requests to keypad scanner
•  Provides commands and data to video

 output
! Create TLM ports for each component

•  Select appropriately target or initiator
! Connect TLM ports

58

Hands-on Step 2 - How to:
Create a component port

1. Select component in the graphical design view
2. Design Menu " Create port" Create TLM port
3. In Property View: Select port direction

2
3 1

59

Step 2:
Creation of component ports

Create the following ports:
•  Image processor

–  3 TLM initiator ports
•  Frame grabber

–  1 TLM target port
•  Keypad scanner

–  1 TLM target port
•  Video encoder

–  1 TLM target port + 1 TLM initiator port
•  Ethernet output

–  1 TLM target port

60

Step 2 - Result:
Created ports

61

Hands-on Step 3 - How to:
Connect two component ports

Several ways to do it, one being:
•  Switch to “Connection mode” by clicking the first icon below the design view
•  For each connection:

–  Move the mouse near port 1
•  It should get highlighted when you are close enough

–  Click and drag the mouse to port 2
–  Release

•  Deactivate “Connection mode” by clicking the first icon below the design view

Connection
 Mode
 Switch

62

Step 3:
Connecting components

Create the following connections:
•  Image processor " Frame grabber
•  Image processor " Keypad scanner
•  Video encoder " Ethernet output
•  Image processor " Video encoder

(Move the automatically created port
to a better position)

63

Step 3 - Result:
Connected components

64

Hands-on Step 4 - How to:
Assign source code to a component

!  Select the component
!  In Property View

•  Use the File entry’s “Browse…” button to
 select the relevant file

Browse
 button

65

Step 4:
Component implementations

!  We prepared a SystemC implementation
 for each component
•  Available in directory

~/AsipIDE/SystemC/
!  Assign the some source code to each

 component
•  Image processor: image_processor.cpp
•  Frame grabber : frame_grabber.cpp
•  Keypad scanner: keypad_scanner.cpp
•  Video encoder: video_encoder.cpp
•  Ethernet output: ethernet_output.cpp

66

Hands-on Step 5:
SystemC simulation

! Start simulation
•  Click Simulation Menu"Run Simulation

! Automatic generation of top-level
 SystemC code

! Reads input from directory images
! Streams output to file

/tmp/asipide_tutorial.mpg
•  Output can be played with mplayer

67

Debugging:
Design view animation

! Simulation trace observable in IDE
! Controlled via Simulation controller view

1. Scan
 Trace File

2. Animate
 Graph View

Same as
Simulation Menu "

 Run Simulation

68

Connecting a real webcam

! Still in software

! New implementation of frame grabber

•  Access to webcam from the host computer

! SystemC source code provided

69

Hands-on Step 6 - How to:
Create an extra implementation

1. Select component in the graphical design view
2. Design Menu " Create component" Create an

 implementation

70

Step 6:
New component implementation

! Select the frame_grabber component
! Create a new implementation

•  Of type “single-element”

•  Attached to the source code
 frame_grabber_webcam.cpp

! Check that the new implementaion is
 selected

! Simulate

71

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

2. Keypad refined to Verilog
Co-debugging SystemC TLM-Verilog

72

Iterative refinement to hardware

! With everything working at TLM level,
 we will slowly move components to
 Verilog and then to hardware

! TLM ports refined to pin level

! Starting with the keypad

73

Hands-on Step 7:
Changing keypad to keypad_v2

1.  Add library demo_hardware_lib_1

2.  Drag&drop keypad_v2 on top of
 keypad_scanner

3.  A new dialog suggests how the
 connections from the old component
 can be transferred to the new
 component. Accept the suggested
 mapping.

74

Hands-on Step 7:
keypad_v2 inspection

! Select keypad_v2 for inspection
! Two implementations

•  Our first SystemC TLM implementation
•  A new Verilog implementation

! Two interfaces
•  TLM interface
•  Pin-level interface

75

Hands-on Step 7:
keypad_v2 transactor

!  Different combinations of implementation +
 interface possible
•  TLM impl. + TLM interface

–  as used until now
•  Verilog impl. + pins interface

–  No connections between keypad_v2’s pins and
 image_processor’s TLM ports

•  TLM impl. + pins interface
–  We haven’t defined a transactor for this, as we don’t plan

 to simulate using this configuration
•  Verilog impl. + TLM interface

–  Useful to us, as the TLM interface can connect to the
 image_processor’s TLM ports

–  Transactor automatically instantiated

76

Step 7 - Result:
keypad_v2 transactor

77

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

3. Keypad moved to hardware
Transaction routing through board’s CPU and FPGA

Co-debugging hardware-software

78

Targeting Hardware

! We want to use a real hardware keypad
! But keep the rest in simulators

Problem:
! No direct link between host and keypad
! Need to go through Host " Serial cable

 " ARM CPU " Bus " FPGA "
 Keypad

79

FPGA board

80

Hands-on Step 8:
Targeting the FPGA board

!  Select the inner component inside keyboard_v2
!  In Property View, select the desired Target:

 “Virtex FPGA on demo board”

81

Hands-on Step 8:
Targeting the FPGA board

! The Simulation targets view detects that
 the 2 simulation targets cannot
 communicate directly (blue link)

82

Hands-on Step 8:
Targeting the FPGA board

1.  Select the blue link
2.  Apply the suggested ASIP routers

2

1

83

Step 8 - Results:
Targeted FPGA board

84

Hands-on Step 9:
FPGA-software co-simulation

! Click on the icon “Show Tool Flow”
!  Launching Simulation

•  Generates SystemC to FPGA board
 communications

•  Generates top-level code for each target
– SystemC
– Host to board controller (precompiled software)
– Board’s ARM CPU
– Board’s FPGA

85

Step 9 - Results:
Tool Flow

86

Step 9 – Results:
Hardware-software co-simulation

! SystemC requests to the keypad
 module are forwarded to the hardware
 keypad via:
•  Host to board controller

•  Board’s ARM CPU
•  Board’s FPGA

! Response forwarded back

87

!  Main execution on host
!  SystemC transaction “poll keyboard”

•  Sent to router1
•  Routed through router2 and router3
•  Converted to hardware asynchronous channel

 transaction

Hw-Sw Sync-Async Cosimulation

!  Verilog keyboard_if:
•  Synchronous

 implementation
•  Asynchronous

 interface

88

Demo Contents

Frame
 Grabber

Keypad

Image Processor

Video
 Output

4. Processor and output moved to hardware
Based on re-usable open-source cores

89

Open-source IP Re-use

!  IP re-use from www.opencores.org
•  Video output

– VGA/LCD Controller

•  Keypad scanner
– Keypad Scanner

•  Frame grabber
– Hand-made component

! Opencores components use Wishbone
 interface

90

Final refinement to hardware

! Definition of ports at pin level
! Verilog implementations of modules
! All modules moved to FPGA

91

Hands-on Step 10:
IP Re-use

! Open and inspect
 tutorial_final_1.asip.xml

! This project illustrates how the cores
 from opencores.org were imported and
 connected together in a synchronous
 way (1 clock domain) with Wishbone
 interconnect

92

Hands-on Step 11:
Integration in existing frameworks

!  Launch Simulation
•  Environment is setup to demonstrate

 interactive use of ISE within AsipIDE
 compilation/synthesis flow

•  Instead of compiling and reporting errors in
 AsipIDE, designers can debug the Verilog
 inside ISE while other compilation
 branches (ARM ASM, SystemC, …) follow
 their own tool flows

93

Hands-on Step 12:
Assisted GALS design

! Open and inspect
 tutorial_final_2.asip.xml

! This project illustrates “assisted GALS
 design”
•  Same cores from opencores.org

•  Wrapped by AsipIDE with GALS interfaces

•  Can serve to bootstrap GALS project or to
 learn about GALS

94

Quick Peek

! Feature coming soon: Embedded
 visualisation of HDL
•  E.g. Verilog components will show their

 inner synthesised netlist
•  Trace file events will be animated on the

 netlist in the GUI
•  Multiple languages visualised

 simultaneously

95

Thank You!

AsipIDE Tutorial

