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EU Project GALAXY     

! GALs interfAce for compleX digital
 sYstem integration 

! Supported by 
 European Commission 
7th Framework Programme (2007-2013) 
Objective ICT-2007.3.3: 
Embedded System Design 
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EU Project GALAXY 

! GALAXY Project Partners 
•  IHP GmbH - Innovations for High

 Performance Microelectronics (Germany) 
•  EPFL - Ecole Polytechnique Fédérale de

 Lausanne (Switzerland) 
•  Università di Bologna (Italy) 
•  Silistix UK Ltd. (United Kingdom) 
•  Infineon Technologies AG (Germany) 
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EU Project GALAXY 

! GALAXY Project Goals 
•  Remove existing barriers to the adoption of

 GALS technology  
•  Integrated GALS design flow 
•  Interoperability framework between existing

 open and commercial CAD tools 
•  Heterogeneous systems at mixed levels of

 abstraction 
•  Novel Network-on-Chip capabilities 
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EU Project GALAXY 

! GALAXY Demonstrator: 
Wireless communication system in
 40nm CMOS process 
•  Evaluate GALS approach to solve system

 integration issues  
•  Prove robustness to process variability

 problems in nanoscale geometries  
•  Explore the low EMI properties, inherent

 low-power features 
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Tutorial Overview 

! General presentation of tools and IDE 

! Demo of main features 

! Hands-on: A home surveillance system 
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General presentation of tools and IDE 

!  Motivation 
•  Bringing GALS to the masses! 
•  Gcc brought software programming to home users 
•  Many open-source/freely-available hardware

 design tools 
–  Icarus Verilog simulator 
–  Xilinx ISE 
–  VHDL Alliance tools from Lip6 

•  But full open-source hardware-software-FPGA
 design flow still unclear 

•  Also integrates commercial tools 
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General presentation of tools and IDE 

!  AsipIDE connects existing tools together to
 form a (co-)simulation design flow 
•  Iterative design methodology 

–  Transforming software... 
–  …to hardware 

•  Hardware-software-FPGA co-simulation 
•  Automatically generated GALS

 communications 
•  Graphical debugging 

–  Multiple abstractions represented together  
–  Animation from simulation traces 
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General presentation of tools and IDE 

! Calculator demo 
•  Demonstrates iterative GALS prototyping 

! Baseband processor&G3card demo 
•  Demonstrates scalable environment 
•  Navigation in large embedded system 

! Features demo 
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Calculator Demo 

• Calculator: 
•  Keyboard 
•  LCD 
•  Main program 

•  polling the keyboard 
•  processing 
•  sending value to LCD 

•  Keyboard asynchronous interface 
•  LCD asynchronous interface 
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Calculator Demo 
• High level architecture in C/C++ 
•  Step-by-step implementation on hardware 
•  FPGA board prototyping 
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Calculator Demo 

Keyboard 
(synchronous) 

Main Calculator 
(asynchronous) 

LCD 
(synchronous) 

Software simulation 
Hardware 

Step 1. All in Software 
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Calculator Demo 

Keyboard 
(synchronous) 

Main Calculator 
(asynchronous) 

LCD 
(synchronous) 

Software simulation 
Hardware 

Step 2. Keyboard in Hardware 

14 

Calculator Demo: 
FPGA board 
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! Simplified view of board for Galaxy tools 

Calculator Demo: 
FPGA board 
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! Simplified view of board 
!  Importing components to targets 

Calculator Demo: 
FPGA board 
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! Simplified view of board 
!  Importing components to targets 
!  Links Analysis 

•  Impossible links re-routed 

Calculator Demo: 
FPGA board 
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!  Main execution on host 
!  SystemC transaction “poll keyboard” 

•  Sent to router1 
•  Routed through router2 and router3 
•  Converted to hardware asynchronous channel

 transaction 

Calculator Demo: 
Hw-Sw Sync-Async Cosimulation 

!  Verilog keyboard_if: 
•   Synchronous

 implementation 
•  Asynchronous

 interface 
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External Tool Flow 

Xilinx tool flow integrated with
 SystemC and C++ flows 
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Calculator Demo 

Keyboard 
(synchronous) 

Main Calculator 
(asynchronous) 

LCD 
(synchronous) 

Software simulation 
Hardware 

Step 3. All in Hardware 
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Baseband processor&G3card Demo 

!  Illustrating scalability 
•  Zoom&pan inside large designs 
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Baseband processor&G3card Demo 
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Features Demo 
!  Automatic instantiation of adapters 
!  Automatic use of transactors 
!  Easy to switch components between multiple levels of

 abstractions, with always a proper interface regenerated 
!  Selection of any simulators or FPGA target 

•  Ability to use asynchronous-specific simulators: Balsa, Petri nets 
!  Automatic use of local and remote tools for compilation,

 synthesis and simulation flow; remote resource sharing
 (queues) 

!  Trace file animation, debugging 
•  Colour-based channel representation, clearer and saving space 
•  Asynchronous debugging such as deadlock detection 

!  Asynchronous NoC 
•  XPipes: graphical updates ! regenerates everything automatically 
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Features Demo: 
Automatic instantiation of adapters  
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Features Demo: 
Automatic use of transactors 
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Features Demo: 
Switching between abstractions 
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Features Demo 
!  Automatic instantiation of adapters 
!  Automatic use of transactors 
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Features Demo: 
Simulator/FPGA selection 
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Features Demo: 
Tool flows 
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Features Demo 
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Features Demo: 
Trace file animation for debugging 
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Features Demo: 
Asynchronous XPipes NoC 
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Features Demo: 
Asynchronous XPipes NoC 
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Features Demo: 
Asynchronous XPipes NoC 

40 

Features Demo: 
Asynchronous XPipes NoC 
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Hands-on:  
A home surveillance system 

!  Motivation 
•  Typical application which home developers

 would like to use FPGAs for, but encounter
 design flow problems 

•  Linux-based solutions available 
•  USB webcam 
•  Zoneminder analysis 
•  Remote storage 

–  High purchase cost 
–  High consumption 

•  FPGA cheaper final solution 
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Hands-on:  
A home surveillance system 

!  Video processing application 
•  Webcam " motion detection " video encoding " ethernet

 streaming to remote server 

!  Outline 
•  Requirements definition 
•  Identification of re-usable open-source components 
•  Creation of components, architecture exploration 
•  Components assembly, automatic adapters 
•  Automatic code generation, code running in SW 
•  Iterative refinement of SW components to HW 
•  Co-simulation software-FPGA 
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Requirements Definition 

!  Inputs: webcam + keypad 
!  Outputs: 

•  Ethernet connection to send the motion-detected
 images/videos 

•  Replaced by local VGA output for the demo 
!  Movement is detected by subtracting 2

 consecutive frames 
!  Changes in input frame pixels start the

 recording 
!  Threshold set by keypad 
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Block Diagram 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 
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Block Diagram 

Keypad 

Image Processor 
Video 
encoder 

Ethernet 
output 

VGA out Frame
 Grabber 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

1. All simulated in software at TLM level 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

2. Keypad refined to Verilog 
Co-debugging SystemC TLM-Verilog 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

3. Keypad moved to hardware 
Transaction routing through board’s CPU and FPGA 

Co-debugging hardware-software 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

4. Processor and output moved to hardware 
Based on re-usable open-source cores 
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Identification of 
re-usable open-source components 

Available from www.opencores.org 

•  Keypad scanner 

•  JPEG-MJPEG video encoder 
•  VGA/LCD controller 
•  Wishbone Memory wrapper 
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Start of Hands-on 

!  Initialise environment 
source asipide_env_setup!

! Create and enter your own directory 
mkdir your_name!
cd your_name!

! Start IDE 
asipide!
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 Hands-on Step 1 - How to: 
Create a new component 

!  If it will contain sub-components 
•  Select the parent component in the graphical design view 
•  Design Menu " Create component " Create sub-circuit component 

!  If it will be a “leaf” component, referring to existing source code files 
•  Select the parent component in the graphical design view 
•  Design Menu " Create component " Create single element component 
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Step 1 - How to: 
Create a new component 

! After a component creation, the IDE
 enters “Edit mode” 
•  Components can be moved 
•  Components can be resized 

! Next created component will inherit the
 same size 

! You can edit the component and
 instance names in the Property View 
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Step 1: 
Creation of component architecture 

Create these 6 components: 
•  Image_processor 
•  Frame_grabber 

•  Keypad_scanner 
•  Video_output, with sub-components: 

–  Video_encoder 

–  Ethernet_output 
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Step 1 - Result:  
Created components 
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Components assembly 

!  We will now import and assemble the components together 

!  Often the hardware is not available at the start of a project. We
 need to do as much as possible using software and simulators. 

! Version 1 (mostly to define the architecture and the main
 communication data types): 
•  Frame_grabber component will take its input from files 

•  Ethernet output will dump results to a file 

•  Image processor will just subtract the new frame's pixels values
 from the previous frame's and check whether the max pixel change
 goes over a certain threshold 

•  Video encoder will use free software encoders: ffmpeg/libavcodec 

!  Communications will use TLM, the highest level of abstraction
 integrated in AsipIDE. 
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Definition of 
ASIP communication types 

! The image processor will be the main
 module (initiating requests) 
•  Initiates requests to frame grabber 
•  Sends probe requests to keypad scanner 
•  Provides commands and data to video

 output 
! Create TLM ports for each component 

•  Select appropriately target or initiator 
! Connect TLM ports 

58 

Hands-on Step 2 - How to: 
Create a component port 

1. Select component in the graphical design view 
2. Design Menu " Create port" Create TLM port 
3. In Property View: Select port direction 

2 
3 1 
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Step 2: 
Creation of component ports 

Create the following ports: 
•  Image processor 

–  3 TLM initiator ports 
•  Frame grabber 

–  1 TLM target port 
•  Keypad scanner 

–  1 TLM target port 
•  Video encoder 

–  1 TLM target port + 1 TLM initiator port 
•  Ethernet output 

–  1 TLM target port 
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Step 2 - Result:  
Created ports 
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Hands-on Step 3 - How to: 
Connect two component ports 

Several ways to do it, one being: 
•  Switch to “Connection mode” by clicking the first icon below the design view 
•  For each connection: 

–  Move the mouse near port 1 
•  It should get highlighted when you are close enough 

–  Click and drag the mouse to port 2 
–  Release 

•  Deactivate “Connection mode” by clicking the first icon below the design view 

Connection
 Mode
 Switch 
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Step 3: 
Connecting components 

Create the following connections: 
•  Image processor " Frame grabber 
•  Image processor " Keypad scanner 
•  Video encoder " Ethernet output 
•  Image processor " Video encoder 

(Move the automatically created port  
to a better position) 
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Step 3 - Result:  
Connected components 
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Hands-on Step 4 - How to: 
Assign source code to a component 

!  Select the component 
!  In Property View 

•  Use the File entry’s “Browse…” button to
 select the relevant file 

Browse
 button 
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Step 4: 
Component implementations 

!  We prepared a SystemC implementation
 for each component 
•  Available in directory 

~/AsipIDE/SystemC/ 
!  Assign the some source code to each

 component 
•  Image processor: image_processor.cpp 
•  Frame grabber : frame_grabber.cpp 
•  Keypad scanner: keypad_scanner.cpp 
•  Video encoder: video_encoder.cpp 
•  Ethernet output: ethernet_output.cpp 
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Hands-on Step 5: 
SystemC simulation 

! Start simulation 
•  Click Simulation Menu"Run Simulation 

! Automatic generation of top-level
 SystemC code 

! Reads input from directory images 
! Streams output to file 

/tmp/asipide_tutorial.mpg 
•  Output can be played with mplayer 
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Debugging: 
Design view animation 

! Simulation trace observable in IDE 
! Controlled via Simulation controller view 

1. Scan
 Trace File 

2. Animate
 Graph View 

Same as 
Simulation Menu "

 Run Simulation 
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Connecting a real webcam 

! Still in software 

! New implementation of frame grabber 

•  Access to webcam from the host computer 

! SystemC source code provided 
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Hands-on Step 6 - How to: 
Create an extra implementation 

1. Select component in the graphical design view 
2. Design Menu " Create component" Create an

 implementation 
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Step 6: 
New component implementation 

! Select the frame_grabber component 
! Create a new implementation 

•  Of type “single-element” 

•  Attached to the source code
 frame_grabber_webcam.cpp 

! Check that the new implementaion is
 selected 

! Simulate 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

2. Keypad refined to Verilog 
Co-debugging SystemC TLM-Verilog 
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Iterative refinement to hardware 

! With everything working at TLM level,
 we will slowly move components to
 Verilog and then to hardware 

! TLM ports refined to pin level 

! Starting with the keypad 
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Hands-on Step 7: 
Changing keypad to keypad_v2 

1.  Add library demo_hardware_lib_1 

2.  Drag&drop keypad_v2 on top of
 keypad_scanner 

3.  A new dialog suggests how the
 connections from the old component
 can be transferred to the new
 component. Accept the suggested
 mapping. 
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Hands-on Step 7: 
keypad_v2 inspection 

! Select keypad_v2 for inspection 
! Two implementations 

•  Our first SystemC TLM implementation 
•  A new Verilog implementation 

! Two interfaces 
•  TLM interface 
•  Pin-level interface 
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Hands-on Step 7: 
keypad_v2 transactor 

!  Different combinations of implementation +
 interface possible 
•  TLM impl. + TLM interface 

–  as used until now 
•  Verilog impl. + pins interface 

–  No connections between keypad_v2’s pins and
 image_processor’s TLM ports 

•  TLM impl. + pins interface 
–  We haven’t defined a transactor for this, as we don’t plan

 to simulate using this configuration 
•  Verilog impl. + TLM interface 

–  Useful to us, as the TLM interface can connect to the
 image_processor’s TLM ports 

–  Transactor automatically instantiated 
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Step 7 - Result: 
keypad_v2 transactor 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

3. Keypad moved to hardware 
Transaction routing through board’s CPU and FPGA 

Co-debugging hardware-software 
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Targeting Hardware 

! We want to use a real hardware keypad 
! But keep the rest in simulators 

Problem: 
! No direct link between host and keypad 
! Need to go through Host " Serial cable

 " ARM CPU " Bus " FPGA "
 Keypad 
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FPGA board 
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Hands-on Step 8: 
Targeting the FPGA board 

!  Select the inner component inside keyboard_v2 
!  In Property View, select the desired Target:

 “Virtex FPGA on demo board” 
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Hands-on Step 8: 
Targeting the FPGA board 

! The Simulation targets view detects that
 the 2 simulation targets cannot
 communicate directly (blue link) 
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Hands-on Step 8: 
Targeting the FPGA board 

1.  Select the blue link 
2.  Apply the suggested ASIP routers 

2 

1 
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Step 8 - Results: 
Targeted FPGA board 
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Hands-on Step 9: 
FPGA-software co-simulation 

! Click on the icon “Show Tool Flow” 
!  Launching Simulation 

•  Generates SystemC to FPGA board
 communications 

•  Generates top-level code for each target 
– SystemC 
– Host to board controller (precompiled software) 
– Board’s ARM CPU 
– Board’s FPGA 
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Step 9 - Results: 
Tool Flow 
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Step 9 – Results: 
Hardware-software co-simulation 

! SystemC requests to the keypad
 module are forwarded to the hardware
 keypad via: 
•  Host to board controller 

•  Board’s ARM CPU 
•  Board’s FPGA 

! Response forwarded back 
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!  Main execution on host 
!  SystemC transaction “poll keyboard” 

•  Sent to router1 
•  Routed through router2 and router3 
•  Converted to hardware asynchronous channel

 transaction 

Hw-Sw Sync-Async Cosimulation 

!  Verilog keyboard_if: 
•   Synchronous

 implementation 
•  Asynchronous

 interface 
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Demo Contents 

Frame
 Grabber 

Keypad 

Image Processor 

Video
 Output 

4. Processor and output moved to hardware 
Based on re-usable open-source cores 
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Open-source IP Re-use 

!  IP re-use from www.opencores.org  
•  Video output 

– VGA/LCD Controller 

•  Keypad scanner 
– Keypad Scanner 

•  Frame grabber 
– Hand-made component 

! Opencores components use Wishbone
 interface 
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Final refinement to hardware 

! Definition of ports at pin level 
! Verilog implementations of modules 
! All modules moved to FPGA 
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Hands-on Step 10: 
IP Re-use 

! Open and inspect
 tutorial_final_1.asip.xml 

! This project illustrates how the cores
 from opencores.org were imported and
 connected together in a synchronous
 way (1 clock domain) with Wishbone
 interconnect 
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Hands-on Step 11: 
Integration in existing frameworks 

!  Launch Simulation 
•  Environment is setup to demonstrate

 interactive use of ISE within AsipIDE
 compilation/synthesis flow 

•  Instead of compiling and reporting errors in
 AsipIDE, designers can debug the Verilog
 inside ISE while other compilation
 branches (ARM ASM, SystemC, …) follow
 their own tool flows 
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Hands-on Step 12: 
Assisted GALS design 

! Open and inspect
 tutorial_final_2.asip.xml 

! This project illustrates “assisted GALS
 design” 
•  Same cores from opencores.org 

•  Wrapped by AsipIDE with GALS interfaces 

•  Can serve to bootstrap GALS project or to
 learn about GALS 
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Quick Peek 

! Feature coming soon: Embedded
 visualisation of HDL 
•  E.g. Verilog components will show their

 inner synthesised netlist 
•  Trace file events will be animated on the

 netlist in the GUI 
•  Multiple languages visualised

 simultaneously  
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Thank You! 

AsipIDE Tutorial 


